The ABC-6 Family

\author{

1. The Periodic Building Unit (PerBU) - 2. Type of Faulting - 3. The Layer Symmetry
 4. Connectivity Pattern - 5. Ordered End-Members - 6. Disordered Materials synthesized to date 7. Supplementary Information - 8. References
}
2. The periodic building unit (PerBU) equals the layer shown in Figure1:

(a)

(b)

Figure 1: The PerBU is an arrangement of single T6-rings in the $\boldsymbol{a} \boldsymbol{b}$-plane of a hexagonal unit cell. In (a) a single layer, and in (b) a projection of a 3-layer stacking sequence $A B C$ is shown

The PerBU in the ABC-6 family of framework types consists of a hexagonal array of non-connected planar T6-rings (depicted in Fig.1a in bold), which are related by pure translations along \boldsymbol{a} and \boldsymbol{b}. The T6-rings are centered at (0,0) in the $\boldsymbol{a} \boldsymbol{b}$ layer. This position is usually called the A position (Fig.1b).
2. Type of faulting: 1-dimensional stacking disorder of the PerBU's along [001].
3. The plane space group of the PerBU is $P(6) \mathrm{m} \mathrm{m}$.

4. Connectivity pattern of the PerBU:

Neighbouring PerBU's can be connected through tilted 4-rings along +[001] in three different ways:
(a): the second layer is shifted by $+(2 / 3 \boldsymbol{a}+1 / 3 \boldsymbol{b})$ before connecting it to the first layer; so the T6rings in the second layer are centered at $(2 / 3,1 / 3)$. This position is usually denoted as the B position (Fig.1b). The same connection mode can be repeated to generate a third PerBU shifted with respect to the second layer by (again) $+(2 / 3 \boldsymbol{a}+1 / 3 \boldsymbol{b})$. The T6-rings are now centered at $(4 / 3,2 / 3)$ [or, equivalently, at ($1 / 3,2 / 3$)]. This position is called the C position (See Fig. 1b). Adding a fourth layer with the same connection mode gives a shift with respect to the first layer of $(2 \boldsymbol{a}+\boldsymbol{b})$ [or zero, i.e. the A position again]. The resulting stacking sequences, exhibiting the same connection mode, are denoted as AB, BC and CA, respectively. The connection mode is illustrated in Fig.2a viewed down [001] (left), nearly along [010] (top right), and along [010] (bottom right).
(b): the second and third layers are shifted by $-(2 / 3 \boldsymbol{a}+1 / 3 \boldsymbol{b})$ before connecting them along $+[001]$ to the previous layer to give stacking sequences AC, CB and BA. The connection modes are the same and illustrated in Fig. 2b.
(c): the second layer has a zero lateral shift along \boldsymbol{a} and \boldsymbol{b}. This connection mode leads to an AA, BB or CC stacking sequence depending on whether the added layer is connected to a layer with T6-rings in the A, B or C position, respectively. The connection mode is shown in Fig. 2c.

(a)

(b)

(c)

Figure 2: Connectivity modes in the ABC-6 family of zeolites

Once the stacking sequence along [001] is known, the 3-dimensional framework is defined.
Examples of faulted frameworks in the ABC-6 family of zeolites:

Figure 3: Examples of stacking disorder with CHA/GME (a) and OFF/ERI (b) sequences

5. The simplest ordered end-members in the ABC-6 family:

Name	Code	\#Repeat layers	Stacking sequence
Cancrinite (1)	CAN	2	AB(A)........
Sodalite (2)	SOD	3	ABC(A).....
Losod (3)	LOS	4	ABAC(A)...
			cont'd on next page

Name	Code	\#Repeat layers	Stacking sequence
Liottite (4)	LIO	6	ABACAC(A)......
Afganite (5)	AFG	8	ABABACAC(A).....
Franzinite (6)	FRA	11	ABCABACABC(A).....
Offretite (7)			
Erionite (8)	OFF	3	AAB(A)......
TMA-E(AB)(9)	ERI	6	AABAAC(A).....
Levyne (10)	LEV	6	AABCCB(A)......
STA-2 (11)	SAT	12	AABCCABBC(A).....
		4	AABABBCBCCAC(A)......
Gmelinite (12)	GME	6	AABB(A)......
Chabazite (13)	CHA	8	AABBCC(A)..........
SAPO-56 (14)	AFX	12	AABBCCBB(A)..........
AIPO-52 (15)	AFT		AABBCCBBAACC(A)....

Examples of ordered end-members in the ABC-6 family are presented in Figure 4 in the same sequence as in the Table above.

CAN
AB(A)

SOD
ABC(A)

LOS

ABAC(A)

Figure 4: Perspective drawing (left) and parallel projection along [010] of the unit cell content (right) of periodic end-members in the ABC-6 family. The hexagonal \boldsymbol{c} axis points towards the top of the page and the horizontal axis is equal to $\boldsymbol{a} \cos 30$ as indicated for CAN. (Fig. 4 is cont'd on next page)

LIO
ABACAC(A)

AFG
ABABACAC(A)

Figure 4 (Continued): For legend: See previous page. (Fig. 4 is continued on next page)

OFF
AAB(A)

ERI

AABAAC(A)

EAB
AABCCB(A)

LEV
AABCCABBC(A)

Figure 4 (Continued): For legend: See next page. (Fig. 4 is continued on next page)

Figure 4 (Continued): Perspective drawing (left) and parallel projection along [010] of the unit cell content (right) of periodic end-members in the ABC-6 family. The hexagonal \boldsymbol{c} axis points towards the top of the page; the horizontal axis is equal to $\boldsymbol{a} \cos 30$. (Fig. 4 is continued on next page)

Figure 4 (Continued): Perspective drawing (left) and parallel projection along [010] of the unit cell content (right) of periodic end-members in the ABC-6 family. The hexagonal \boldsymbol{c} axis points towards the top of the page; the horizontal axis is equal to $a \cos 30$. (Final page of Figure 4)

6. Disordered materials synthesized and characterized to date:

Linde T (ERI/OFF) (16); Babelite (random stacking) (17); Linde D (disordered CHA) (18) ; Phi (disordered CHA) (19); ZK-14 (disordered CHA) (20); LZ-276 (disordered CHA) (21); LZ-277 (disordered CHA) (21).

7. Supplementary material

Since the ABC-6 family contains 15 ordered end-members simulations of powder patterns for stacking disorder of only the most common framework types are given.

Figure 5: Simulated powder pattern of the Gmelinite/Chabazite series. In this example, the stacking of the PerBU's in AABB- and AABBCC-sequences is disordered

Simulation of the stacking disorder in the ABC-6 family: ERI-OFF

Figure 6: Intensity (\mathbf{I}, a.u.) of simulated powder patterns versus diffraction angle ($\mathbf{2} \boldsymbol{\theta}$) of the ERI-OFF series in steps of 10% intergrowth. The stacking sequences of ERI and OFF are disordered. The 0% ERI pattern corresponds to the 100% OFF pattern

8. References

(1) a) L. Pauling, Proc. Natl. Acad. Sci. 16, 453 (1930).
b) O. Jarchow, Z. Kristallogr. 122, 407 (1965).
(2) a) L. Pauling, Z. Kristallogr. 74, 213 (1930). b) J. Loens and H. Schulz, Acta Cryst. 23, 434 (1967).
(3) W. Sieber and W.M. Meier, Helv. Chim. Acta 57, 1533 (1974).
(4) S. Merlino and P. Orlandi, Am. Mineral. 62, 321 (1977).
(5) P. Bariand, F. Cesbron and R. Giraud, Bull. Soc. Fr. Mineral. Cristallogr. 91, 34 (1968).
(6) P. Ballirano, E. Bonaccorsi, A. Maras and S. Merlino, Can. Mineral. 38, 657 (2000).
(7) J.M. Bennett and J.A. Gard, Nature 214, 1005 (1967).
(8) L.W. Staples and J.A. Gard, Mineral. Mag. 32, 261 (1959).
(9) R. Aiello and R.M. Barrer, J. Chem. Soc. A 1970, 1470 (1970).
(10) R.M. Barrer and I.S. Kerr, Trans. Farad. Soc. 55, 1915 (1959).
(11) G.W. Noble, P.A. Wright and Å. Kvick, J. Chem. Soc. Dalton Trans. 23, 4485 (1997).
(13) a) L.S. Dent and J.V. Smith, Nature 181, 1794 (1958).
b) J.V. Smith, R. Rinaldi and L.S. Dent, Acta Cryst. 16, 45 (1963).
(14) a) S.T. Wilson, N.K. McGuire, C.S. Blackwell, C.A. Bateman, and R.M. Kirchner. In: Zeolite Science 1994: Recent Progress and Discussions. Studies in Surface Science and Catalysis, Vol. 98. Elsevier Science B.V., 1995, p 9.
b) R.F. Lobo, S.I. Zones and R.C. Medrud, Chem. Mater. 8, 2409 (1996).
(15) a) J.M. Bennett, R.M. Kirchner and S.T. Wilson. In: Proc. 8th IZC, Zeolites: Facts, Figures, Future. P.A. Jacobs and R.A. van Santen (eds.). Elsevier Science Publishers B.V., Amsterdam, 1989, p 731.
b) N.K. Mcguire, C.A. Bateman, C.S. Blackwell, S.T. Wilson and R.M. Kirchner, Zeolites 15, 460 (1995).
(16) D.W. Breck, Zeolite Molecular Sieves. Wiley, 1974, p 173.
(17) R. Szostak and K.P. Lillerrud, J. Chem. Soc. Chem. Commun. 1994(20), 2357 (1994).
K.P. Lillerud, R. Szostak and A. Long, J. Chem. Soc. Faraday Trans. 90, 1547 (1994).
(19) K.P. Lillerud, R. Szostak and A. Long, J. Chem. Soc. Faraday Trans. 90, 1547 (1994).
(20) G.H. Kuehl. In: Molecular Sieves. S.C.I., London, 1967, p 85. R.M. Kirchner, Micropor. Mesopor. Mater. 30, 335 (1999).

